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Abstract. We construct a diagram technique for the (r-J) model Hamiltonian expressed in 
terms of Hubbard operators. This technique combines features of the diagram technique for 
normal Fermi systems and those of the diagram technique for the Heisenberg model with 
spin operators. The general graphic structure is identified for one-particle Green functions 
composed of Hubbard operators. The diagram technique for the (r-J) model has logical 
consistency, is reasonably simple and can serve as a working tool in exploring various 
properties of this model. To an approximation that resides in summing ladder-type diagrams 
with antiparallel electron lines, we calculate the system’s magnetic susceptibility. A formula 
of a novel type is derived which reflects the dual nature of the magneticstates in the Hubbard 
model; this duality manifests itself in the presence of a localised and an itinerant contribution 
in the bare susceptibility. We trace how the relative value of the localised contribution varies 
as theelectronconcentrationisincreasedfrom0to 1. Itisfoundthat thelocalisedcontribution 
starts increasing dramatically in the vicinity of n = 3. In consequence, with n > 1, the para- 
magnetic phase of the system becomes unstable with respect to the occurrence of ferro- 
magnetic or antiferromagnetic ordering. A magnetic phase diagram for zero temperature is 
constructed on the (f lu, n )  plane. 

1. Introduction 

Despite alarge amount of published work [ 1-61 devoted to the study of possible magnetic 
states in the three-dimensional Hubbard model, the problem is still far from being 
resolved and many results are at variance. The reason for the slow progress in this area 
lies in the extreme complexity of the model Hamiltonian, expressed in terms of Hubbard 
operators, and in the absence of a regular perturbation theory, for example a diagram 
technique, for the Hamiltonian involved. Strictly speaking, such a technique has long 
been available [7-111, and the most consistent exposition of it has been provided in a 
book [ 121. However, the aforementioned technique is too complicated and therefore 
not very constructive. 

Recently, the (t-J) model has come into extensive use, which corresponds to the 
limit U % t of the initial Hubbard model, especially in the context of the non-phonon 
mechanisms of high-T, superconductivity [13]. The Hamiltonian of the (t-1) model is 
somewhat simpler, for it contains no Hubbard operators describing electron pairs on a 
site. The purpose of the present paper is to construct a diagram technique for the 
Hamiltonian of the (t-J) model and to explore the system’s dynamic magnetic sus- 
ceptibility with the aid of the technique developed. The diagram technique rests, of 
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course, on Wick’s theorem for Hubbard operators, which was formulated earlier [7-11]. 
The latter expresses the algorithm of calculating averages of a chronological product of 
Hubbard operators by a successive reduction to averages of the least number of 
operators. Such reduction is possible because the commutator (or anticommutator) of 
two Hubbard operators is itself one of the Hubbard operators. This is reminiscent of the 
situation with spin operators for which the commutator of two operators is a third spin 
operator. 

The diagram technique for spin operators dates back to [ 141 and has been successfully 
applied to various problems of magnetism theory (see e.g. the book [12], where many 
of its applications are given). The same technique with Hubbard operators for the (t-J) 
model is a peculiar combination of the technique with spin operators and the standard 
technique for Fermi systems [15]. In section 2 of the present paper general principles of 
this technique are formulated and in section 3 we derive diagram series for one-particle 
Green functions constructed from Fermi-like and Bose-like Hubbard operators. For 
these, it has been possible to find (section 3) a very general graphic structure. It has 
turned out that the exact one-particle Green function is depicted by a sum of several 
graphic terms, one of which corresponds to the Dyson part in the sense that the Dyson 
equation can be written for this term, just as for ordinary Fermi or Bose systems. The 
other terms contain what we call terminal parts, which are attached to the Dyson line 
either from the left or from the right, as well as at both ends of the line. These terminal 
diagrams prove to be highly essential and can change the poles of the Green function. 

The exposition of these sections of the paper may seem too cursory; however, they 
furnish the prerequisites for practical work in the technique with Hubbard operators. 
Some details of the technique are also described in [ 121. 

The technique that we have constructed possesses great generality and high effec- 
tiveness and can be instrumental in studying various properties of the (t-J) model. 
The present paper (sections 4 and 5) investigates magnetic properties of the system. 
Specifically, we calculate the dynamic susceptibility of the system in the paramagnetic 
phase and explore the system’s instability with respect to the occurrence of ferromagnetic 
and antiferromagnetic order. The question about the occurrence of ferromagnetism in 
the Hubbard model was posed by Hubbard himself, who has shown that in the simplest 
approximation (Hubbard-1) a ferromagnetic ordering is impossible whatever the elec- 
tron concentration n (number of electrons per site), at least in cubic lattices. Improved 
approximations ([2-51 and other authors) have shown that in this model the ferro- 
magnetism is liable to occur over a certain interval of concentrations n. However, there 
are substantial discrepancies between these results, for instance in the issue about the 
bounds of the interval within which the ferromagnetic state exists and about the type 
of ordering (saturated or non-saturated ferromagnetism). These discrepancies arise 
apparently from the various approximations that are due to uncontrollable decouplings 
of chains of equations of motion for the Green functions. In this context, particular 
importance attaches to individual exact results (e.g. Nagaoka’s theorem [6]) or regular 
methods of perturbation theory (e.g. the diagram technique developed in the present 
paper). 

As already stated, on the basis of the diagram technique developed, we have been 
able to ascertain the general structure of the spin Green functions, which enable the 
transverse and longitudinal susceptibilities to be obtained. All graphic structures for the 
Green functions are expressed in terms of four-leg and three-leg diagrams represented 
by graphic series. Perturbation theory has reduced virtually to an approximate cal- 
culation of the electron four-leg diagram. 
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For a concrete calculation of the four-leg diagram, we exploit an approximation that 
consists of summing electron loop diagrams. Such summation in the standard case of 
perturbation theory ( U  t )  corresponds to the random-phase approximation and leads 
to well known results [16] for the dynamic magnetic susceptibility. With the (t-J) model 
( U S  t ) ,  the summation of all loop diagrams (four different loops arise in this case) also 
corresponds to the random-phase approximation but leads to a novel result for the 
magnetic susceptibility, in which features of a localised magnetism and those of an 
itinerant magnetism show up simultaneously. On the basis of the expression derived for 
the magnetic susceptibility, we have constructed on the ( t / U ,  n )  plane a phase diagram 
in which the regions of existence of the ferromagnetic and antiferromagnetic phases are 
delineated. 

2. Perturbation theory with Hubbard operators 

We consider the standard Hubbard model with the Hamiltonian 

% = 2 t l I ' a ~ a l t ,  + U n l t  rill. 

Under the conditions U + t the Coulomb term is chosen as the Hamiltonian '%&, while 
the transfer Hamiltonian is viewed as &lnT. As &o is diagonal with respect to the site 
indices, the Hamiltonian is conveniently expressed in terms of Hubbard operators. 
These operators, = Ipj(q1, are defined on the basis of four one-site functions, 
IO), 1 +), 1 -) and 12), which respectively describe states without an electron, with one 
electron and with two electrons on a given site. In terms of the operators XPq, 

Il'a 1 

& o  = E EpX? (2.1) 

$Il,,, = tlr,[(x:o + x:-)(x;+ + Xl.2) + (x;O + x:+)(x$- + x;*)]. 
lP 

(2 * 2) 
11' 

Here 
a diagonal matrix: 

is the eigenvalue of the one-site contribution by &olto eo, the contribution being 

%'ol = diag(0, - p  - dh, - p  + dh, U - 2p} ( 2 . 3 )  
(we have included in %o a term with an external magnetic field H ,  h = gpBH and a 
chemical potential p ) .  

We start by considering the limit U-. E, in which the state 12) does not occur, so that 
the total Hamiltonian (2.1), (2.2) reduces to 

eo = E +  Ex:+ + E -  Ex;- 
$tint = tll,(x:"~+ + x;ox;-> 

I I 

II '  

where E? = - p  3 qh. Thus, only nine of the sixteen operators Xpq remain for U -  x: 

2 > 1 > 9 , x++. (2.6) x+o xo+ x-0 xo-. x+- x-+. xoo x-- 
> >  

The first four operators are Fermi-like (f-type), whereas Xf-  and X-+ are Bose-like 
(b-type). The Hubbard operators satisfy the following permutation relations: 

[x;q, X;S]* = (dq,XY 5 Sp,x;q)61I'. (2 .7 )  
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The upper symbol (anticommutator) is taken when both operators are of the €-type, 
while the lower symbol is taken when at least one of the operators is of the b-type, or 
diagonal. Instead of the initial diagonal operators, it is convenient to use linear com- 
binations of these: 

F p  = xyo + xy B:- = x:+ -x;-. (2.8) 

The statistical mechanics of the model can be described with the aid of the Green 
functions due to Matsubara, which are statistical averages of the product of the Hubbard 
operators Xyq in the Heisenberg representation of X f 9 ( z ) .  Using the interaction rep- 
resentation, we write 

( T ( x y y z l ) ,  . . l v y " ( z , , ) )  = ( T ( X y ' ( z 1 ) .  . . xy~q.(T,>a(p))),/(a(p)), (2.9) 

where all the notations are standard ones: 0 < T < p = 1/T, 

x;9 (.) = e'iX;q xyq((t> = erg,, X Y ~  e-Tk0 (2.10) 

(2.11) 

From the form of equation (2.4) for Xu, we find an expression for the Hubbard operators 
in the interaction representation: 

xyq(T) = e(&p-Eq)TXyq, (2.12) 

In order to calculate averages of products of operators XYq((z), Wick's theorem has 
been proved, which permits averages of n operators to be reduced to a sum of averages of 
n - 1 operators. A detailed exposition of the problem is available in the aforementioned 
book [12]. Here we quote only the final algorithm, which consists of the following: The 
average of the T-product of operators X y q ( z )  is broken up into a sum of terms with all 
possible pairings (couplings) of two operators. By a coupling we understand the 
equations 

111 
xy"T)x;'"(~') = t G P 9 ( T  - z')[x;'"', Xyq].(z ' )  

X y ( t ) X , ,  -7$, (z')  = 9 P ¶ ( z  - z ' ) [ x ; ' q ' ,  xyq]-(t') 

(2.13) 

(2.14) 

which are valid under the average sign ( . . . ),. The first equation is taken when Xyq is an 
f-operator. and the second when Xyq,  is a b-operator. In equation (2.13) the upper 
symbol is taken when the operator Xy!" is of the f-type and the lower when the operator 
X;'" is of the b-type. 

In these expressions, G and 9 are the Fermi and Bose Green functions, which are 
defined by the equations 

(2.15) 

(2.16) 

withf(x) and N(x) being the Fermi and Bose distribution functions, respectively. 
By virtue of the fact that the right-hand side of equations (2.13) and (2.14) involves 



Diagram technique f o r  Hubbard operators 8909 

commutators or anticommutators of Hubbard operators, a pairing of two operators 
decreases the number of operators under the average sign by unity. As a result of a 
multiple repetition of the pairing procedure, the initial average of the T-product falls 
apart into a sum of terms in each of which only the diagonal operators (we denote these 
by Z f q )  enumerated in equation (2.8) will remain under the average sign. These averages 
can be calculated with the help of the generating functional 

= [exp(/z:o + ii;O) + exp(A7" - P E + )  + exPO.;' - P E - ) ]  (2.17) 
I 

using the formula (for operators Zfq  belonging to the same site) 
bk-'(ZPlq1)o/bhP2q2 . . . 8 h P k q k  = ((zf'Iq1 - ( z P 1 4 1 ) o ) .  . . ( Z p k q k  - ( z p k q k ) o ) ) o  

(2.18) 

(ZP4)" = (l/W)bW/bAPq. (2.19) 

The averages calculated by equation (2.9) are broken up, in each order of per- 
turbation theory, into a sum of terms, each of which is a product of the Green functions 
GoT , G I  ,go (corresponding to Go', GO-, 9+-), as well as of the cumulants (2.18). We 
shall depict the Green functions by full lines and the quantity tlr by a wavy line, according 
to the rule ( x  = ( 1 ,  z), G ; ( x  - x r )  = G:(z - z ' )6 , ,  , g o ( x  - x ' )  = % O ( t  - z r )b l I8 ,  

where (ZP9)o stands for the averages of the operator 2;': 

t(x - x r )  = t&t - . I ) ) :  

COT (x  - X I )  = -0- GOJ ( x  - x r >  = + 

g o ( x  - x ' )  = --,-- t(x - x r >  = - (2.20) 

x x' x x' 

x x r  x X I  

Cumulants of different order will be represented as small full circles (which we shall call 
'circlets') enclosed in ovals. A circlet corresponds to a diagonal operator Zfq that pertains 
to a site l, whereas an oval denotes that the site indices of all the operators Z y  that are 
comprised in it coincide. Thus 

( Z y ) ,  = * ( ( 2 ; q  - ( z p q ' ) o ) ( 2 ; ' q '  - ( z p ' q ' ) o ) ) o  = m . , , . (2.21) 

The resulting diagram technique has features of both the standard technique for 
Fermi or Bose operators and the spin operator technique (see [12]). The technique 
constructed employs a theorem of connectedness which enables us to transcribe the 
right-hand side of equation (2.9) as 

(2.22) 

and thus to take into account only connected diagrams. 
One important feature of the diagram technique for Hubbard operators must be 

noted. The Green lines (2.20) correspond to couplings of a pair of operators that go 
from an annihilation operator to a creation operator, as is normally adopted in diagram 
techniques. Significantly, the Hubbard operators (2.6) include several annihilation 
operators, for example X o c ,  X o -  , X + - ,  and pairing may begin with any one of these. 
Thus, with the graphic portrayal of the terms involved in equation (2.22) and found by 
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Wick's theorem, the resulting expressions have an ambiguous notation, which depends 
on the particular operator from which we have started [lo]. To make the notation and 
the resulting diagram technique unequivocal, we need to choose for the non-diagonal 
operators xo+, xo- , x+- a system of priorities that fixes the sequence of operations, 
i.e. indicates the operator with which to start pairing. The system of priorities is arbitrary 
and the choice of it is determined by the character of the physical problem. 

We conclude this general section by ascertaining the meaning of the Green functions 
GPq and 9 P q  introduced by equations (2.13) and (2.14). Using these equations, we 
calculate the expressions 

%",x - x ' )  = - ( T ( X p y t ) X ? ( t ' ) ) ) ,  = c",x - x')(F"O), (2.23) 

%:(x - x')  = -(T(X[-(z)X,+(t'))), = %"(x - x ' ) ( B + - ) o  (2.24) 

which show the relation of the functions GO, and 53" to the one-particle fermion and 
boson Green functions of the zero approximation. According to the rules proposed 
above, these relations have the following graphic representation: 

%OT = - %OL = -+-- 9b0, = - - + 4  (2.25) 

where the circlet at the end of the line respectively denotes a zeroth-order cumulant: 
(Po)', (F-o)o and (B+-),. By the definitions (2.15) and (2.16), the corresponding 
expressions for the quantities GO, and 9" in the momentum representation read 

GO,(iw,) = I/(iw,, - E , )  (2.26) 

%'(io,) = I/(iwn - h)  0, = 2nnT. (2.27) 

w,  = (2n + 1)nT 

The cumulants that correspond to the Green functions (2.23) and (2.24) are 

(F'") = 1 - II 1 ( F O )  = 1 - n T ( B + - ) = n t  - n V  (2.28) 

with n, being the mean number of electrons with spin U on a single site. 

3. Diagrammatic representation of one-particle Green functions in the limit 

As in any diagram technique, the possible types of vertices and the rules of connecting 
these are determined by the structure of the Hamiltonian (2.5) and do not depend 
on the Green function being calculated. In the technique with Hubbard operators the 
types of vertices depend, however, on the system of priorities or seniorities that has been 
adopted. In the present paper we adopt a seniority system defined by the symbolic 
formula 

xo+ > xo- > x+- (3.1) 
where the operator on the left is senior to any one of the operators on the right and, in 
calculating the average of the T-product, it is necessary to start the pairing from the most 
senior operator. Possible vertex types in this system are shown in figure 1. Each vertex 
corresponds to one of the operators, X o + ,  X", X o -  and X-", involved in the expression 
(2.5) for %&,. The occurrence of complicated vertices is typical of systems described 
by operators for which the commutator (or anticommutator) is not a c-number. For 
example, complicated vertices with two or three Green lines occur in the diagram 
technique for spin operators [12]. One feature peculiar to some vertices must be noted: 
When only Green lines enter the vertex (and none of the lines go out), the vertex 
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( 0 - 1  

Figurel. PossibieinnerverticesforHamiltonian(2.5) inX"' >XI'- > X--senioritysystem. 

necessarily contains a circlet, which belongs to the end of one of the Green lines, the 
one that has been constructed on the junior operator of the seniority system adopted. 

The graphic structures presented in figure 1 constitute the rules of the diagram 
technique. The form of the graphs for the Green funtions is determined by these rules 
and the operators X f q ( z )  assigning a given Green function (they determine the external 
vertices of diagrams). We have not defined a general rule for ascertaining the sign of a 
diagram. The sign of a diagram is convenient to find by appropriately unfolding the 
average according to Wick's theorem. 

Let us consider a one-particle Green function that describes the propagation of an 
electron with a given spin projection: 

Yi0(x; x ' )  = - (T(xp(Z)x?(t ' ) ) ) .  

To a zero approximation, these quantities are depicted by the first two graphs from 
(2.25). We give a graphic depiction of % in the first order of perturbation theory. This 
is 

In the first row we have written out graphs that may be viewed as a thickening of the 
circlet 0 ;  that is, this row contains quantities The second row contains what are 
called terminal diagrams (also appearing in the technique for spin operators), in which 
the external (right-hand) vertex is separated from the end of the Green line 

The third row contains self-energy graphs. As can be readily seen, the topological 
fragments that arise in the subsequent orders are the same; therefore, an exact graphic 
depiction of the series (3.3) can be given. We label a full (thick) circlet 
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a full terminal part 

B 
and a full self-energy part 

0. 

% , = *  + e (3.4) 

e = - +  -+G==-* (3.5) 

Then the series for the exact Green function can be represented by the equation 

where the thick fermion line satisfies the Dyson equation 

A similar graphic series occurs also for the function % j. ; this differs from the series 
(3.3) in the colour of the Green lines. With A, to denote the terminal part of the Green 
function %, and with Z, to denote the self-energy part, the analytic representation of the 
exact Green function can be written in the form 

%, = (P) + A U ) / [ ( G Y  - Zul.  (3.6) 
The denominator (3.6) corresponds to the structure of a usual electron Green function 
satisfying the Dyson equation; the numerator reflects the fact that the anticommutator 
of the operatorsx"" and X"", which define the Green function %,, is not a c-number. An 
analogous structure is inherent in the one-particle spin Green function of a Heisenberg 
magnet in the spin operator technique [17]. 

To the quantity GO, corresponds the one-site Green function (2.15), which describes 
the localised perturbation of the electron state on a single site. The transition of an 
electron from one site to another is described by an infinite series of diagrams containing 
wavy lines. In the simplest case we have the series 

* + +"-e + p + ' . '  (3 * 7) 

(a similar series iiolds also for the other spin orientation), to which corresponds the 
propagator 

GUP, ion)  = l / [ i W n  - E,(k)l 

5Tu(k) = (1 - n - u ) W  + & U  

(3.8) 

(3.9) 

where 

with ~ ( k )  being the band energy of an electron in the absence of a Coulomb interaction. 
In the nearest-neighbour approximation 

E(k) = t eikA.  
A 

(3.10) 

The series (3.7) corresponds to the Hubbard-1 approximation [l]. 

has the form 
We now consider the Green function composed of Bose-like operators. This function 

(3.11) 

and describes the correlation of the transverse spin components, as the operators Xf- 
and X-+ are equivalent to the operators S+ and S - .  In the zero approximation it is 

%b(x - x r )  = -(T(xT-(T)2;+(Tr))) 
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depicted by the last graph of equation (2.25). Within the first order of perturbation 
theory we have 

(3.12) 

We see that two types of external vertices arise for the operator X+- and there are two 
types of vertices corresponding to the operator X - + .  One of the vertex types is the 
beginning or end of the spin Green function 

while the other corresponds to a vertex with an ingoing and an outgoing electron line, 
which have opposite spins. All the graphs of the series (3.12) can be sorted out according 
to the type of left-hand and right-hand external vertices. If we preliminarily perform the 
summation (3.7) in the electron lines and thus pass over to electron propagators, then 
we arrive at the following representation for 911: 

(3.13) 

where the thickened spin Green function obeys the Dyson equation 

r=D=3 = -->- + -2- 2 zr3. (3.14) 

In expression (3.13) all the electron Green lines are exact propagators. 
Thus, the function $IOl is expressed in terms of vertex parts of three types, namely an 

electron four-leg diagram and two three-leg diagrams of a mixed type. The four-leg 
diagram and the three-leg diagrams are uncuttable along one spin line 

-0- 

Solving equation (3.14), we write the expression for the transverse spin Green function 
in symbolic form: 

. (3.15) 
@ " ) - I  - 2 

%=O + + 

This notation reflects the mixed character of the dynamic susceptibility in the Hubbard 
model. The first two terms in equation (3.15) correspond to the contribution of the 



8914 Yu  A Izyumov and B M Letfulov 

itinerant electron states, whereas the last term describes rather the contribution of the 
localised states to the susceptibility as well as the superposition of both types of states. 

We now introduce the Green function of the longitudinal spin components: 

9 , , ( x ;  x ’ )  = ( T ( B : - ( z ) B , t - ( t ’ ) ) ) .  (3.16) 

It falls apart into a sum of four functions of the form 

(3.17) 

We present a diagram series for one of these functions. For example, 

t b t d t o + ~  
(3.18) 

Analogous series can be written out also for other matrix elements. Passing to electron 
propagators, we represent these series as 

+ . . .  

Each of the quantities involved here is a 2 x 2 matrix with respect to the spin indices U 

and U ’ .  The quantities introduced here are 

+mt = -0 + 

+m- = (3.20) 

(the other two matrix elements are obtained from these quantities by changing the colour 
of the arrows). The symbol 

6zzZz9 
denotes a thickened entity that has two external vertices of the type 0, i.e. vertices 
which correspond to the diagonal operator Fd. For this entity we can set up an equation 
which has the structure of the Dyson equation: 

(3.21) # *  - =  (@--i) t 

where the irreducible part 

is uncuttable along the quantity 

ez3. 
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The quantity 

6 
has a matrix structure. 

Thus, expressions (3.15), (3.19) and (3.21) tell us that the longitudinal and transverse 
Green functions in the hierarchy X"+ > X o -  > X + -  have closely related structures and 
reflect the existence of three contributions: by the itinerant states, by the localised states 
and by the superposition of these states. 

Up to this point we have considered the limit U-, m. At finite U ,  which, however, 
are sufficiently large, as before, for the small parameter K = t /U < 1 to exist, excluding 
the electron pairs in the initial Hamiltonian (2.2) leads to the effective Hamiltonian [13] 

(3.22) 

where S ,  is the spin operator and ri, = A, + A, 1 the operator of the number of electrons 
in a site E .  In terms of the Hubbard operators, the corresponding expression for this 
Hamiltonian is 

&;nt = z c J I r ( X ; + X : -  - x:+x-- r )  (3.23) 
N' 

where 

= ~t 6(f - E' - A). 
A 

To obtain the total interaction Hamiltonian for the situation U S  t ,  we need to add 
equation (3.23) to expression (2.5) for kin,. Inclusion of k:,, leads to additionalvertices, 
shown for the same system of priorities in figure 2. The dotted line in this figure refers 
to the quantity J,,,. The Hamiltonian (3.23) says that the dotted line may join either 
vertices of the type (- +) and (+ -) or vertices of the type (+ +) and (- -). 

-&-+ . -,A--*- -4- --,A-,- 

( + + I  ( + * )  ( - -  1 ( - - I  

Figure 2. Possible inner vertices for Hamiltonian (3.23) 

If we consider as the perturbation both terms, XI,, and X;,,, in the Hamiltonian (a 
situation corresponding to the (t-1) model), we shall see that there exist no vertices at 
which both interaction lines, dotted and wavy, converge. For this reason, the general 
graphic expressions for the Green functions (3.4), (3.13) and (3.19), obtained by taking 
account of only the kinetic term X,,, ,  hold good also in the general case where the 
Hamiltonian (3.23) is added to this term. 

4. Dynamic paramagnetic susceptibility in the (t-J) model 

In this section we consider the Green functions of the transverse and longitudinal spin 
components in the paramagnetic phase by invoking an approximation that corresponds 
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to the random-phase approximation (RPA). In this case the Green functions being studied 
are expressed via electron four-leg diagrams. As can be seen from figures 1 and 2,  there 
are four bare purely electronic vertices: - 

>...-< A. (4.1) 

We choose an approximation in which ladder diagrams with antiparallel lines are 
summed. Normally, such summation corresponds to the RPA or the non-interacting 
mode approximation. For the four-leg diagram defining the function ‘?hL we set up the 
equation 

(4.2) 

which allows for all the graphs with antiparallel lines; the graphs consist of individual 
loops joined together at one point, the same momentum k corresponding to each of the 
loops. There are four types of such loops, which pertain to the quantities I I (k ) ,  Q ( k ) ,  
A(k)  and @ ( k )  (see thedefinitions below). Successive stringingofsuchloopscorresponds 
to allowance for non-interacting modes. The last of the bare graphs (4.1) is dropped, 
because it only dresses the simple loops, connecting in them the electron lines with 
opposite spins and thereby perturbing the graphic structure of the RPA. 

We introduce the analytic notation of the four-leg diagram: 

kl - k k2 mz- = T ( k ,  - k ,  k l ;  k2 + k ,  k2) k = ( k ,  iwlZ) (4.3) 

kl k2 + k 

The integral equation (4.2) is easy to reduce to an algebraic one, and we can readily 
obtain the exact solution of it in the form 

where we can take as G,(k)  expression (3.8). 
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We now define the three-point vertex parts 
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Let us call them yL and yR, respectively. Substituting into these expressions equation 
(4.4) for the four-leg diagram yields 

yL(k1 - k ,  k l ;  k )  = - k)[l - QWl + @@) + J ( k ) ) / d ,  (kj (4.9) 
y ~ ( k ;  k2 + k ,  k2) = ( B + - ) o { E ( ~ ~  + k)[l - A(k)l + @ ( k )  + J ( k ) ) / d i  jk). (4.10) 
We now can readily calculate the left-hand and right-hand terminal parts in expression 
(3.13) for the transverse Green function: 

= %(k) = (B+-),{Q(k)[l - N k ) ]  + n ( k ) [ @ ( k )  + J(k) l ) /d , (k )  (4.11) 

(4.12) @ 5 % ( k )  = {A(k)[l - Q(k)l + n ( k ) [ @ . ( k )  + J(k)I) /d , (k)  

and also the quantity 

0 + 
= n(k) = r I ( k ) / d , ( k ) .  (4.13) 

It remains for us to calculate the irreducible self-energy part in equation (3.14) for 
the spin Green function. This irreducible part is expressed through the three-point 
vertex part (4.8): 

- 4 z --,.=.+. .... .-+-+- >o-> . + ->-a . .  . 3 - -  

(4.14) 

(4.15) 

Using expressions (3.13) and (3.14), we can easily obtain the final expression for the 
transverse Green function: 

-0 
whence we obtain 

q k )  = (B+-)o[@(k)  + J(k)lld,(k). 
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with 9l0(iwn) being the zero-approximation spin Green function defined by formula 
(2.27). 

We proceed to consider the paramagnetic phase in the absence of an external 
magnetic field. Using two relations, 

1 + e--/jEo 
(B+-)o  = (F'0)O - (F-O>o ( W O  = 1 + + e- - / j&-  

(4.17) 

(4.18) 

The factor n (electron concentration) involved in the expressions for (B+-) ,  and 
(Fuo)o and in formula (4.17) appears because of averaging over the distribution of nN 
localised electrons in N lattice sites. Such averaging is necessary because the zero- 
approximation Hamiltonian corresponds to a system with non-interacting states on 
different sites and the ground state of such a system is degenerate with respect to the 
electron configurations on the lattice. 

Expression (4.16) can be transcribed into 

On performing the analytical continuation iw, + w + i s ,  ~ ( k ;  w )  is the dynamic sus- 
ceptibility of the paramagnetic phase. The quantity xo(k; w )  is a sum of independent 
contributions to the susceptibility by localised and itinerant states. The localised con- 
tribution is the usual Curie susceptibility (the first term in equation (4.20)). The quantity 
-n(k) represents the Pauli susceptibility of a free-electron gas. The denominator in the 
expression for ~ ( k ;  w )  allows for the effect of the interaction of elementary magnetism 
carriers in the system. An effective parameter of this interaction is the quantity 

The quantities n, Q, A and CP involved in equation (4.19) have a formal smallness 
parameter l / z ,  where z is the number of nearest neighbours. To the quantity CP(k) we 
addJ(k), which has no smallness 1/z but contains another smallness parameter, K. If, in 
the calculation of the four-leg diagram, we had included the fourth bare vertex from 
expressions (4,1), this would have led to 'dressing' of the loops and to the occurrence of 
correction terms of order K ( ~ / z ) .  Therefore, the rejected part of the ladder diagrams 
with antiparallel lines in the four-leg diagram corresponds to the conditions 

(4.21) 

Formula (4.19) resembles the well known result due to Izuyama, Kim and Kubo [ 161, 
obtainedforX(k; w )  in the opposite limit, U 4 t .  However, this similarity is rather formal 
and comes from the random-phase approximation being used in both cases. A substantial 
distinction is that in [16] the denominator for ~ ( k )  involves the expression 1 - Uxo(k) ,  
whereas in our case it contains, instead of U ,  another parameter, namely CP(k) + J(k ) .  

(W) + J(W. 

K(1/Z) < l/Z, K < 1. 
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Finally, a crucial distinctive feature is that in our case ( U  + t )  the expression for xo(k) 
involves a contribution by localised magnetic states, while in [16] xo(k )  = -II(k) .  

The Green function of the longitudinal components can be calculated in a similar 
fashion. It is determined by a four-leg diagram which should be found from the equations 

(4.23) 

We label these four-leg diagrams T-+ and T++,  respectively. Solving equations written 
in the standard notation, we arrive at the following result for the paramagnetic phase: 

T - + ( k l  - k ,  k , ;  k2  + k ,  k 2 )  = [ l / d l l (k ) ] [ e (k ,  - k)&(k2 + k )  

X II(A + Q + Jn) + ~ ( k l  - k)(l - Q 2  - II@ - J Q I I )  + ~ ( k 2  + k )  

X (1 - A' - II@ - JAII) + @(A + Q) + J ( 1 +  QA)] (4.24) 

T + + ( k ,  - k ,  k l ;  k ,  + k ,  k2) = - [ l / d i l ( k ) ] [ ~ ( k ,  - k ) ~ ( k 2  + k)II(l + QA - II@) 
+ ~ ( k l  - k)(A - AQ2 + QIIQ +AI)  

+ e(k2 + k ) ( Q  - QA2 + A n @  + Jn) 
+ @(l - II@ + QA) + J ( Q  + A  +Jn)] (4.25) 

where 

dil(k) = [ ( l  - A)(1 - Q )  - II(@ + J ) ] [ ( l  + A)( l  + Q )  - II(Q - J ) ] .  (4.26) 

and J are functions of k ;  they are 
defined by formulae (4.6), in which the spin index of the electron Green functions should 
be omitted. The calculation here is more cumbersome than that for the transverse Green 
function. The final result is 

In these expressions the quantities II, Q, A, 

(1/z-)(W+-)rI/aA t ) 4 u , , o  - W k )  
49Ilj(k) = 

[I - A(k)l[l - Q(k)l + [(1IT)(a(B+-)o/aA 1 ) a w , , o  - n(k)I[@(k) + J ( k ) ] '  
(4.27) 

Taking account of the expression for the cumulant involved here, 

(a(B+-)o/aA t ) I A  = o  = Inno (4.28) 

we come to the conclusion that formulae (4.27) and (4.16) for the transverse and 
longitudinal Green functions in the paramagnetic phase coincide (to within a sign and a 
numerical coefficient h), as should be the case. 
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5. Instability of the paramagnetic phase: phase diagram 

In expressions (4.6), defining the major quantities upon which the final result (4.19) 
depends, we can carry out a summation over frequencies to obtain 

TX GO, (k1 - k > ~ C i  ( k , )  3 { f [ ~ ( k l  - k ) ~  -f[~(k1)1}/{~(k1 - k )  - ~ ( k , )  - ion) 
n 

(5.1) 
where E(k) = (1 - In)E(k) - ,U. The expression thus obtained enables us to investigate 
the behaviour of the quantities l l ( k ) ,  Q ( k ) ,  A(k) and O(k)  with different k, io, = 0. 

To investigate the instability of the paramagnetic phase with respect to anti- 
ferromagnetism, we consider ~ ( k )  at k = ko = (n, n, n ) / a  and zero frequency. In this 
case 

~ ( k  - ko) = -&(IC).  ( 5 4  
The sums over k in expressions (4.6) may be expressed in terms of integrals over the 
energy E with the density of states P ~ ( E ) .  On the assumption that pO(&) is symmetric, i.e. 
pO(&) = po(-&), it can be shown that at T = 0 

A(ko,O) = -Q(ko ,  0) = 0 

where EF = ~ ~ ( 1  - in-' and 
equation for the chemical potential 

is the Fermi energy. The latter should be found from the 

In = (1 - in )  d e  p o ( ~ ) f ( g )  (5.4) 
--z 

taken at T = 0. 
We adopt a rectangular band model for which 

with W = 2zt being the width of a band with an ~ ( k )  spectrum. From expressions (5.3), 
it follows that 

@(ko ,  0) = $[n(I - n)/(I - in)3]W. (5.7) 
To determine the stability boundary of the paramagnetic phase, we explore the 

expression 

Since for T = 0, no = 0 at E~ < 0 and no = 1 at > 0, we need to consider two cases: 

(i) E~ < 0. Because I l (ko ,  0) < 0, the condition for the paramagnetic phase 
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x(ko, 0) < 0 to be unstable at T = 0 has the form 

1 - rI(ko,O)[@(k, ,  0) - KtZ] < 0. 

This condition can be fulfilled if 

@(k,, 0 )  - K t Z  < 0. 
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(5.9) 

(5.10) 

(ii) eF > 0. The paramagnetic phase is unstable if condition (5.10) is satisfied. For 

K > In(1 - n)/(l - 3 < n < l  (5.11) 

the rectangular band, conditions (5.9) and (5.10) read 

(5.12) 

The instability of the paramagnetic state relative to ferromagnetism is determined 
from the quantity ~ ( k ,  0) at k = 0: 

inn, - TI'I(0,O) 
(5.13) '('7 = T[I - Q<O, 0112 + [inno - TII(O, o>~[~D(o, 0) + K t z ]  

where 

1 
(1 - zn) 

@ ( O ,  0 )  = - 7 &;po(EF) 
1 

(1 - in) rqo ,  0 )  = - ___ pO(&F) (5.14) 
A(O, 0 )  = Q ( O ,  0 )  = -[I/(I - In)]EFpo(gF). 

It can be readily noticed that the paramagnetic phase is stable at 
phase is unstable if 

< 0. With > 0 this 

@(o, 0 )  + K t Z  < 0 (5.15) 

a condition which for the rectangular band implies that 

K < @n - 1)2/(1 - In) n > n, = 3. (5.16) 

On the basis of the analysis performed, we construct the phase diagram of the 
magnetic states on the ( K ,  n) plane (figure 3). Here the line f corresponds to condition 
(5.16), the line a to condition (5.11), and the line a' to condition (5.12), when the 
inequality sign is replaced by an equality sign. As we see, magnetic states arise when the 

n 

Figure 3. Magnetic phase diagram for (t-J) model 
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Hubbard band is filled near the upper edge: at n, < n < 1 for the ferromagnetic phase and 
virtually in the same interval of n for the antiferromagnetic phase. Antiferromagnetism 
arises at large values of K. As K is increased the antiferromagnetic region expands 
considerably. It should, however, be kept in mind thatperse the (t-J) model holds good 
only for K < 1. 

Inspection of figure 3 shows also that with n = 0.97 the phase boundaries f and a 
intersect, thereby indicating that a phase region exists in which the F and A phases 
coexist. However, it should be borne in mind that in this concentration range (almost 
half-filled band) allowance for the interaction of holes with spin deviations is of crucial 
importance. This follows from a paper by Nagaoka [6], who has given an exact stability 
criterion for the ferromagnetic state at K G 1 and (1 - n )  G 1 (for this problem, see also 
[4]). For the first time, the importance of taking into account the electron-magnon 
interaction in the Hubbard model has been explicitly indicated in [18]. For this reason, 
the analogue of the random-phase approximation that we exploit needs to be refined 
both in the vicinity of n = 1 and in the evaluation of the critical concentration n,. 

The shaded region between the lines restricting the A and F phases corresponds 
apparently to a more complicated ordering. The authors of [19] argue that this region 
may contain heterogeneous phases which represent an antiferromagnetic structure with 
inclusions of ferromagnetic regions that are due to holes. 

6. Conclusions 

The major physical result of the present paper resides in the derivation of the dynamic 
susceptibility of the (r-J) model, expressed by formula (4.19) with formula (4.20). These 
formulae reflect the dual nature of the magnetic states in the Hubbard model, the duality 
manifesting itself in the presence of a localised and an itinerant contribution. The 
relative magnitude of the localised contribution, which has the character of the Curie 
susceptibility, is determined by the parameter no, which varies between 0 and 1 as the 
electron concentration n is varied. At low temperatures this variation comes about 
sharply at n = n, = 3. Formula (4.20) shows that when n < n, the localised contribution 
is suppressed and the system behaves mainly as an itinerant magnet. With n > n,, a 
Curie-type contribution appears in the zero susceptibility. Owing to this contribution 
the system acquires features of a Heisenberg magnet in which a particular magnetic 
ordering type arises if the magnetic correlation parameter Q ( k )  + J(k )  < 0. 

The dual nature of the magnetic states in the Hubbard model is a reflection of the 
mathematical fact that the commutator or anticommutator of two Hubbard operators is 
not a c-number. In this situation both Fermi-type and Bose-type one-particle Green 
functions have a complicated structure, which contains terminal diagrams. Relations 
(3.13) and (3.19) for Green functions of transverse and longitudinal components are 
general fundamental graphic equations for Green functions composed of Hubbard 
operators. The terminal diagrams are highly essential, and only consistent allowance for 
these diagrams alongwith the usual Dyson part of the Green function leads to the correct 
result. Without the diagram technique developedin this paper (by invoking, for example, 
the decoupling procedure), the general mathematical structure of the Green functions, 
expressed by relations (3.13) and (3.19), would have been extremely difficult to reveal. 

Concrete calculations have been provided within the framework of an approximation 
that consists of summing for the electron four-leg diagram ladder-type diagrams with 
antiparallel electron lines. In the given situation this reduces to summing diagrams with 
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different simple loops that have the same momentum, in the spirit of the non-interacting 
modes approximation. This approximation leads to a sufficiently simple expression for 
the magnetic susceptibility and thus makes it possible to obtain the magnetic phase 
diagram of the model. The diagram technique formulated here permits the study of the 
various properties of the ( t -J)  model. The superconducting state that arises within the 
framework of this model will be investigated in a subsequent paper. 
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